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ABSTRACT 

 

This paper presents three primality tests; Fermat test, Solovay-Strassen test, and Rabin-Miller test. 

Mathematica software is used to carry out the primality tests. The application of Fermat’s Litle 

Theorem as well as Euler’s Theorem on the tests was also discussed and this leads to the concept of 

pseudoprime. This paper is also discussed some results on pseudoprimes with certain range and do 

quantitative comparison. Those primality tests need to be evaluated in terms of its ability to compute 

as well as correctness in determining primality of given numbers. The answer to this is to create a 

source codes for those tests and evaluate them by using Mathematica 6.0. Those are Miller-Rabin 

test, Solovay-Strassen test, Fermat test and Lucas-Lehmer test. Each test was coded using an 

algorithm derived from number theoretic theorems and coded using the Mathematica version 6.0. 

Miller-Rabin test, SolovayStrassen test, and Fermat test are probabilistic tests since they cannot 

certainly identify the given number is prime, sometimes they fail. Using Mathematica 6.0, 

comparison study of primality test has been made and given the Miller - Rabin test as the most 

powerful test than other. 
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1. CRYPTOGRAPHY AND PRIME 

TESTING  

Prime number plays an important role 

in the RSA (Rivest, Shamir & Adler) 

cryptography. Until now, there is no valid 

formula to produce prime number, one of the 

recent technologies is to determine primality 

or compositeness of an integer given. 

Primality testing is the process to test whether 

or not a given number n is a prime. Until now, 

primality testing is one of the fundamental 

problems concerning prime numbers. It 

becomes more important since prime number’s 

applications in some area, such as 

cryptography, detections of error in coding, 

and information security, especially 

communication and network security. Ability 

of primality tests has always been a centre of 

discussion. Those tests need to be evaluated in 

terms of its ability to compute as well as 

correctness in determining primality of given 

numbers. The answer to this is to create a 

source codes for those tests and evaluate them. 

These days there are many programming 

languages, but it requires sound 

understanding, and this takes up so much 

times just to learn how to use and get your job 

done. Mathematica has the solution to this 

problem. It is a user friendly software and do 

not takes up so much time to learn.  

 

Theorem 1  Euclid Prime Number 

Theorem 

There are infinite numbers of prime numbers 

[Eynden]. 

Proof :   

Suppose that p1, p2, …, pk are all primes. 

Consider the number  

 

n = p1 p2 … pk    (1) 

 

If it is prime, then it is a new prime. 

Otherwise, it has a prime factor q. If q were 

one of the primes pi for i = 1, 2,  …, k , then 

 

 q | (p1 p2 … pk)   (2) 

and since  

 

 q | (p1 p2 … pk )  (3) 

 

 q would divide the difference of these 

numbers, namely 1, which is impossible. So q 

cannot be one of the pi for i = 1, 2,  …, k , and 

must therefore be a new prime (Eynden, 

2001). 

 

In this paper three primality tests 

were being carried out using the help of 

Mathematica software to assess and 

compare their ability. Since Mathematica 

very easy to learn and the command is very 

simple. Mathematica has so many build-in 

functions that can carry out many technical 

tasks like counting digit number, solving 

congruency and modulo problems, where this 

function is so much needed in carrying out the 

tests that we will see later. Mathematica also 

has a build-in function to count number of 

primes less than an integer and many more 

functions related to number theoretical 

concept. In this work there are four primality 

tests source code that has been designed using 
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Mathematica. Those are Miller-Rabin test, 

Solovay-Strassen test, Fermat test and Lucas-

Lehmer test. Each test was coded using an 

algorithm derived from number theoretic 

theorems [Anderson] and coded using the 

Mathematica version 6.0. Miller-Rabin test, 

Solovay-Strassen test, and Fermat test are 

probabilistic tests since they cannot certainly 

identify the given number is prime, 

sometimes they fail. This is due to the 

Fermat’s little theorem and Euler’s 

theorem which does not work in both ways 

[Jones].  

 

Theorem 2  Fermat Little Theorem 

(Mcintosh, 2007) 

If n is a prime number and a is an integer, then 

 

a
p
 ≡ a (mod n)   (1) 

Furthermore, if the greatest common divisors 

of a and n is 1, then  

 

a
(n-1) 

≡ 1 (mod n)   (2) 

 

Proof:  

Consider the first  n  positive multiples of a, 

that is, the integer  

. None of this number 

is congruent modulo n to neither any other nor 

zero. If it happened,  

ra ≡ sa (mod n), 1 ≤ r < s ≤ n – 1 (1) 

 

then a could be cancelled to gives r ≡ s (mod 

n), which is impossible. Therefore, the 

previous set of integer must be congruent 

modulo n to 1, 2, 3, …, n – 1, taken in some 

order. Multiplying all these congruent 

together, we find that  

 

a.2a.3a… (n – 1) a ≡ 1.2.3….(n – 1)(mod n) 

(2) 

 

then   

a
(n – 1)

 (n – 1)! ≡ (n – 1)! (mod n)  (3) 

 

by cancelling  from both sides of the 

preceding congruence, this is possible since n ∤ 

(n – 1)!, gives  a
(n – 1)

 ≡ 1(mod n) (Dorsey, 

1999). Therefore these theorems do not work 

in both ways but the tests assumed that it 

works. That is why pseudoprime exists. The 

source code of each test using Mathematica 

6.0 is shown in section 2, 3, and 4 

respectively. 

In section 5, the comparisons of the 

three tests are discussed, pseudoprime 

including carmichael number as absolute 

pseudoprime, Euler pseudoprime in Solovay-

Strassen test, and strong pseudoprime that 

produced by Miller-Rabin test are also 

discussed, where we can see how Mathematica 

software has helped carrying out the tests 

without spending much effort on the 

programming task. Lastly section 6 concludes. 

 

2. CODING FERMAT TEST USING 

MATHEMATICA 6.0 

The following source codes are derived 

from an algorithm obtained mainly from 
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Fermat’s theorem, Euler’s Theorem and other 

related theorems from number theory to test 

whether or not the given number is a prime 

number. First, the first 100 integers set as the 

input. The output will come up as a prime or a 

composite. After this is done we can enlarge 

the input range to the first 1000 and until 

10,000. Some build-in functions of Mathematica 

6.0 is also used to carry out some technical tasks, 

like finding the exact number of primes less 

than an integer, tabulating prime numbers, 

pseudoprimes, strong pseudoprime and 

Carmichael numbers obtained from the output 

of the following source codes, drawing and 

plotting facilities are also been used to 

facilitate our tasks. The build-in Mathematica 

commands, “Prime Q[integer]” and 

“PrimePi[integer] are used to compare the list of 

primes and pseudoprimes and to compute 

percentage of pseudoprimes produced by each 

test. Due to space limitation, we are unable to 

show all tables and figures. To get a full 

picture of this project, we suggest one refers to 

Gradini (2009). 

Fermat test is developed from Fermat 

Little Theorem and then become one of the 

probabilistic prime testing. According to 

Fermat’s Little Theorem, if n is prime and 

GCD (a, n) = 1 then a
n – 1

 ≡ 1 (mod n). If n is 

not prime, it is not necessary true that   a
n – 1

 ≡ 

1 (mod n), but there still a possibility.  

According to Herman and Soltys (2008), all 

primes pass the Fermat test for all a ∈ 

ℤ Fermat’s theorem also can be used to test 

compositeness of a number. For a given 

integer n, choose some integer a with GCD (a, 

n) = 1 and compute          r ≡ a
n – 1

 (mod n). If 

the modulo n computation give the results not 

equal to 1, n is composite. Otherwise, 

n probably prime, in other words, n can be 

prime or composite.  

 

2.1 Algorithm of Fermat Test 

 

Input: an integer n ≥ 3. 

Output: n is prime or n is composite 

1. Choose random integer a with 2 ≤ a ≤ 

n – 1 and GCD (a, n) = 1.  

1.1 Compute r ≡ a
n – 1

 (mod n). 

1.2 If r ≠ 1, n is composite, 

otherwise n is prime number.  

2. If GCD (a, n) ≠ 1, then n is composite.  

Here, when GCD (a, n) ≠ 1, n is 

certainly composite because it is implies that n 

has another divisors beside 1 and itself, which 

is contradict with definition of prime number. 

If GCD (a, n) = 1, n can be composite or prime 

number. 

  

2.2 Source Code of Fermat Test 

By coding the Algorithm into Mathematica 

(6.0 version), here is the source code: 

a=__; 

n=__; 

If [2≤a≤n-1,If [GCD [a,n]==1, 

r =PowerMod [a,n-1,n]; 

If[r≠1,n "is composite",n "is Prime"],n "is 

composite "],"cannot be proceed, pick a any 

integer 2≤a≤n-1"] 

Once this is executed, if the input is a prime 

number then it will tells you that n is a 
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prime. Otherwise it will gives you a message 

n is a composite. Take notes, there are 

numbers which also identified as prime 

numbers even though they are not. These 

numbers are called pseudoprimes. This is 

due again to the Fermat’s theorem. This source 

code can also identify Carmichael numbers 

(absolute pseudoprimes). Carmichael number 

is a pseudoprime for all bases a. From the 

output produced by this test, we have tabled 

list of primes for every base a which are less 

than 10,000. The build-in Mathematica 

command, “PrimeQ[ integer]” is used to 

verify the primality of the test output and 

from here we can identify pseudoprimes, then 

the command, “PrimePi[ 10,000 ]”, is used to 

compute percentage of pseudoprimes. The 

smaller the percentage is, the better the ability 

of the test is, as this indicates the accuracy of 

the test. To look for Carmichael numbers, we 

just need to look out for common 

pseudoprimes for each base a. Here, we 

restrict the choice of the base a from 2 until 

20 only. For a complete output list of 

pseudoprimes and carmichael numbers refer 

to [Gradini]. 

3. CODING SOLOVAY-STRASSEN 

TEST USING MATHEMATICA 6.0 

The Solovay-Strassen primality testing was the 

first test popularized by the advent of public 

key cryptography, in particular RSA 

cryptosystem. Solovay-Strassen test developed 

from Euler test combine with Jacobi symbol. 

Recall that Jacobi symbols  is equivalent to 

the Legendre symbols when is prime. 

 

Definition 1 Euler’s Criterion [Jones and 

Jones] 

If  is an odd prime and GCD (a ,n) = 1, then 

for all integer a, 

 

≡ (mod n)    (1) 

 

Definition 2  Euler Witness 

Let n be an odd composite integer and a be 

integer in interval [1, n-1]. If either Greatest 

Common Divisor  (GDD) 

 

(a, n) > 1 or (mod n) (1) 

 

then  is called an Euler witness for . 

Otherwise, if GCD (a, n) = 1 and 

  

(mod n)   (2) 

 

 then n is said to be an Euler pseudo-prime to 

the base a [Bektas]. 

 

3.1 Algorithm of Solovay-Strassen Test 

Input: an odd integer n ≥ 3. 

Output: n is prime or n is composite. 

1. Choose a random integer a with 2≤ a 

≤ n -1 and GCD (a, n) = 1. 

1.1 Compute r ≡  (mod 

n). 

1.2 If r ≠ 1and r ≠ n-1, then  
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i. Compute Jacobi 

symbol, . 

ii. If  r ≢ S (mod n), n is 

composite. 

iii. Otherwise, n is prime 

. 

1.3 Otherwise, n is prime. 

2. If GCD (a, n) ≠ 1, n is composite. 

On the algorithm, n must be an odd integer, 

since for n is even the remainder computation 

cannot be done. This happens since it needs to 

calculate r ≡  (mod n) but when n 

even number, n-1 will become odd number, 

thus  is not integer. For some n and a, the 

computation does not have integer solution. 

Example for this problem will be shown next. 

Same as Fermat test, when GCD (a, n) ≠ 1, n 

is composite number. 

 

3.2 Source code of Solovay-Strassen test 

By coding the algorithm above onto 

Mathematica (Version 6.0), the source code is 

a=__; 

n=__; 

If[2≤a≤n-1 ∧ OddQ[n]==True,If 

[GCD[a,n]==1, 

  r=PowerMod[a,(n-1)/2,n]; 

  If [r≠ 1∧ r≠n-1, 

   s=JacobiSymbol [a,n]; 

If [ r≢Mod[s,n],n "is Composite",n "is 

Prime"], 

n "is Prime"],n "is composite"],"cannot be 

proceed, 

pick 2 ≤a≤n-1"] 

Solovay-Strassen test is usually hard to 

implement since it involves Jacobi symbol 

computation but still Mathematica managed to 

compute this. Here the same things happen as 

the one in Fermat test. But here instead of 

using the Fermat theorem, we have used the 

Euler theorem to determine primality and it 

also works one way. In this test the 

pseudoprimes is called Euler pseudoprimes and 

based on the output list, carmichael number 

does not exist here as there is no common 

pseudoprime for each base a. For a complete 

output list of Euler pseudoprimes, refer to 

[Gradini]. 

4. CODING MILLER - RABIN TEST 

USING MATHEMATICA 6.0 

Miller-Rabin test also known as strong 

pseudo-prime test, since sometimes some 

composite numbers passes this test. It comes 

as a works of G.L. Miller, based on the 

Riemann Hypothesis. Later, M.O. Rabin 

modified it in 1976. 

 

Theorem 3  Miller-Rabin Test [Burton]. 

Suppose n is an odd prime. Let  

 

n – 1= 2
s
 r     (1) 

 

where r is odd and s ≥ 1. Let a any integer 

with 1< a< n – 1, such that GCD (a, n) = 1.. 

Then satisfy either 

a
r 
≡ 1(mod n) or ≡ -1 (mod n)  (2) 

 

for some j on interval [0,s – 1]. 
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Theorem 4  Miller-Rabin –Selfridge Test  

[Yan]. 

Let  be a prime, then  

x
2 
≡ 1 (mod p)     (1) 

 

if and only if 

 

x ≡ ± 1 (mod p)    (2) 

 

4.1 Algorithm of Miller-Rabin Test 

 

Input:  Integer .  

Output: n is prime or n is composite.  

1. If n is even, there are much easier test 

available, otherwise continue to the 

next step. 

2. Choose a random integer a with 2≤ a 

≤ n -1 and GCD (a, n) = 1. 

3. Write n – 1= 2
s
 r where r is odd. 

4. Compute b ≡ a
r 
(mod n). 

4.1 If b ≠ 1 and b ≠ n – 1 then do 

the following  

i. 1 

ii. while j ≤ s-1 and b ≠ n 

– 1, do the following steps 

a. Compute 

b←b
2
 (mod n). 

b. If b = 1 then n 

is composite. 

iii. j←j+1 

iv. If b ≠ n – 1, then n is 

composite, else n is prime.  

4.2  Else, n is prime. 

 

4.2 Source Code of Miller-Rabin Test 

By coding this algorithm into Mathematica 

(6.0 version), the source code is: 

n = __; 

a = __; 

k = FactorInteger [n - 1] 

s = k[[1, 2]]; 

r = (n - 1)/(2^s); 

OddQ[r]==True; 

If [EvenQ[n] == True  GCD[a, n]  1, n "is 

even, Another suitable test available", b = 

PowerMod[a, r, n];  

If[b  1 ∧ b  n - 1, j = 1; 

While[j s - 1∧ b  n - 1, b = 

Mod[b^2, n];  

If[b == 1, n "is comp"]; j++]; 

If[b  n - 1, n "is composite", 

n "is Prime"], n "prime"]] 

Writing Miller-Rabin source code is not as 

easy as the last two tests. In this test 

pseudoprimes are called strong pseudoprimes 

as the only pseudoprimes exist are those of 

odd pseudoprimes that passes the last two 

tests. Here the list of pseudoprimes is much 

shorter, when compared to the earlier ones, 

that means less fake primes and this makes 

Miller-Rabin test a much better test then the 

last two. In this test, no carmichael number is 

produced. For a complete list of strong 

pseudoprimes refer to[Gradini]. 

 

5. COMPARISON BETWEEN 

FERMAT’S TEST, SOLOVAY-

STRASSEN TEST, AND MILLER 

RABIN TEST.  
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Running through all the source codes 

indicated in the earlier section, we managed to 

make lists of prime numbers, differentiate 

pseudoprimes and strong pseudoprimes, as 

well as carmichael numbers. For 

pseudoprimes and carmichael numbers, we 

have used some build-in Mathematica 

functions to help us out in determining the 

exact number of primes, such that we can 

make comparison with the outputs from the 

source code. Most tables and figures 

pertaining to distributions of pseudoprimes, 

strong pseudoprimes and carmichael numbers 

are omitted due to space limitation. 

Comparisons between Fermat test, Solovay-

Strassen test, and Miller-Rabin test using 

Mathematica 6.0 are as follows: 

1. There are absolute pseudoprimes 

(carmichael numbers) in Fermat test, 

but not on the other tests. 

2. Miller-Rabin test is better in testing 

primality than the other primality tests. 

It is because the rest often wrong in 

identifying integer n. By the output 

obtained, Fermat test and Solovay-

Strassen test have more pseudoprimes 

than Miller-Rabin test. From the test 

output list, we have deduced that for 

testing prime numbers, Fermat test has 

the biggest number of error, while 

Miller-Rabin test has the smallest 

value of error. 

3. Strong Pseudoprimes are fewer than 

pseudoprime produced by the Fermat 

and Solovay-Strassen test. 

Mathematica has produced the number 

of pseudoprimes that exist in integers ≤ 

10,000 with base a, 2 ≤ a ≤ 20. It is 

learnt from the output that strong 

pseudoprime is fewer than Euler and 

Fermat pseudoprime. In turn, Euler 

pseudoprime is fewer than Fermat 

pseudoprime. Refer to table 1 for the 

list of percentage of pseudoprimes. 

The smaller the percentage the better 

the test is. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.1: Percentage of Fermat, 

Euler and strong pseudoprime. 

a 
Pseudoprime (%) 

Fermat Euler(Solovay‐stras

sen) 

Strong 

(Miller‐

Rabin) 

2 1.79% 1.14% 0.41% 

3 1.87% 0.98% - 

4 3.82% 1.79% 0.81% 

5 1.55% 0.73% - 

6 2.20% 1.38% 0.65% 

7 1.22% 0.98% - 

8 5.70% 3.18% 1.06% 

9 3.99% 1.79% - 

10 2.44% 1.30% 0.49% 
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11 2.28% 1.14% - 

12 2.69% 1.38% 0.73% 

13 2.03% 1.14% - 

14 2.60% 1.79% 0.65% 

15 1.55% 0.73% - 

16 5.13% 3.83% 2.93% 

17 2.03% 1.14% - 

18 3.25% 1.95% 1.06% 

19 3.09% 2.04% - 

20 2.60% 1.63% 0.65% 

 

4. From the Mathematica programming, 

we managed to compute the error of 

Miller-Rabin test which is less than 1 / 

4, where Fermat and Solovay-Strassen 

is bigger than 1 / 4. Now it can be 

determined that the Miller-Rabin 

test has the least probability of 

error in identifying primes ≤ 10,000. 

Fermat and Solovay-Strassen test has 

the probability of error slightly greater 

than Millerrabin test. 

5. From the figure 5.1, we have put all 

the three output of probabilistic tests 

in a chart and compare the number of 

prime produced by each test in the 

range of the first 500 integers, 

followed by the first 1000 integers 

until the first 10,000 integers. We have 

also incorporated the number of prime 

produced using the build-in 

Mathematica function, PrimePi[ 

integer], for each specified range, 

where this is considered as the exact 

number of primes. It appears that, the 

Miller-Rabin test has the nearest 

number of prime to the exact one 

produced by the build-in 

Mathematica command. Thus this 

indicates that Miller-Rabin test has 

the least pseudoprimes compared to 

the two tests, and the Solovay-Strassen 

test has less pseudoprimes than the 

pseudoprimes produced by the Fermat 

test. Therefore, this makes the Miller-

Rabin test superior to Fermat and 

Solovay tests. It also appears that 

Solovay- Strassen test is better than 

Fermat test. 

 

 

 

 

 

 

 

 

Figure 5.1 the number of prime <10,001 

by Fermat, Solovay-Strassen, and Miller-

Rabin test comparing to exact number 

prime using Mathematica 6.0. 

 

6. CONCLUSIONS 

Using Mathematica 6.0 for the 

primality tests, we have managed to conduct 

technical tasks and compare the ability of the 

four primality tests discussed earlier. These 

technical tasks were usually done using 

programming languages which take very long 

time to do the source code. For example 

programming language C or C++ and other 
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programming languages that requires deep 

understanding and time consuming. 

Technically speaking, using 

Mathematica, we have managed to see that 

the Miller-Rabin primality test is better than 

Fermat and Solovay-Strassen probabilistic 

primality test as it produces less pseudoprimes 

when compare to the two of them. Now, we 

can actually forecast that the same trend could 

also be seen when a much higher level of 

programming language is being used to carry 

out these four primality tests. This is to say 

that, we do not need to spend so much time 

and effort learning programming languages 

that takes ages to produce the same results. 

This project has actually taken an 

advantage of the technology offered by the 

Mathematica software. Without this software, 

we might not be able to produce such results, 

which is very fast in terms of producing lists 

of meaningful output, tabulates and 

interprets output data .The Mathematica 

source codes together with some build-in 

functions used in this project are suitable to be 

used in teaching and learning processes, 

especially in teaching number theory at the 

university level or another area that need 

contribution of them. 
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