
Ega Gradini, Comparison Study of...

ISSN 2086 – 1397 Volume III. Nomor 1. Januari – Juni 2012 | 1

COMPARISON STUDY OF FERMAT, SOLOVAY-STRASSEN AND MILLER-RABIN

PRIMALITY TEST USING MATHEMATICA 6.0

Ega Gradini
1

ABSTRACT

This paper presents three primality tests; Fermat test, Solovay-Strassen test, and Rabin-Miller test.

Mathematica software is used to carry out the primality tests. The application of Fermat’s Litle

Theorem as well as Euler’s Theorem on the tests was also discussed and this leads to the concept of

pseudoprime. This paper is also discussed some results on pseudoprimes with certain range and do

quantitative comparison. Those primality tests need to be evaluated in terms of its ability to compute

as well as correctness in determining primality of given numbers. The answer to this is to create a

source codes for those tests and evaluate them by using Mathematica 6.0. Those are Miller-Rabin

test, Solovay-Strassen test, Fermat test and Lucas-Lehmer test. Each test was coded using an

algorithm derived from number theoretic theorems and coded using the Mathematica version 6.0.

Miller-Rabin test, SolovayStrassen test, and Fermat test are probabilistic tests since they cannot

certainly identify the given number is prime, sometimes they fail. Using Mathematica 6.0,

comparison study of primality test has been made and given the Miller - Rabin test as the most

powerful test than other.

Keywords: Primality Test, Fermat Test, Solovay-Strassen Test, Miller-Rabin Test, Prime

Number

1
 Ega Gradni, Dosen Prodi Pendidikan Matemtika – STKIP Bina Bangsa Getsempena, Jalan Tgk Chik Di Tiro,

Peuniti, Banda Aceh, Telepon 0651-33427, Email: ega@stkipgetsempena.ac.id

Ega Gradini, Comparison Study of...

ISSN 2086 – 1397 Volume III.Nomor 1. Januari – Juni 2012 | 2

1. CRYPTOGRAPHY AND PRIME

TESTING

Prime number plays an important role

in the RSA (Rivest, Shamir & Adler)

cryptography. Until now, there is no valid

formula to produce prime number, one of the

recent technologies is to determine primality

or compositeness of an integer given.

Primality testing is the process to test whether

or not a given number n is a prime. Until now,

primality testing is one of the fundamental

problems concerning prime numbers. It

becomes more important since prime number’s

applications in some area, such as

cryptography, detections of error in coding,

and information security, especially

communication and network security. Ability

of primality tests has always been a centre of

discussion. Those tests need to be evaluated in

terms of its ability to compute as well as

correctness in determining primality of given

numbers. The answer to this is to create a

source codes for those tests and evaluate them.

These days there are many programming

languages, but it requires sound

understanding, and this takes up so much

times just to learn how to use and get your job

done. Mathematica has the solution to this

problem. It is a user friendly software and do

not takes up so much time to learn.

Theorem 1 Euclid Prime Number

Theorem

There are infinite numbers of prime numbers

[Eynden].

Proof :

Suppose that p1, p2, …, pk are all primes.

Consider the number

n = p1 p2 … pk (1)

If it is prime, then it is a new prime.

Otherwise, it has a prime factor q. If q were

one of the primes pi for i = 1, 2, …, k , then

 q | (p1 p2 … pk) (2)

and since

 q | (p1 p2 … pk) (3)

 q would divide the difference of these

numbers, namely 1, which is impossible. So q

cannot be one of the pi for i = 1, 2, …, k , and

must therefore be a new prime (Eynden,

2001).

In this paper three primality tests

were being carried out using the help of

Mathematica software to assess and

compare their ability. Since Mathematica

very easy to learn and the command is very

simple. Mathematica has so many build-in

functions that can carry out many technical

tasks like counting digit number, solving

congruency and modulo problems, where this

function is so much needed in carrying out the

tests that we will see later. Mathematica also

has a build-in function to count number of

primes less than an integer and many more

functions related to number theoretical

concept. In this work there are four primality

tests source code that has been designed using

Ega Gradini, Comparison Study of...

ISSN 2086 – 1397 Volume III. Nomor 1. Januari – Juni 2012 | 3

Mathematica. Those are Miller-Rabin test,

Solovay-Strassen test, Fermat test and Lucas-

Lehmer test. Each test was coded using an

algorithm derived from number theoretic

theorems [Anderson] and coded using the

Mathematica version 6.0. Miller-Rabin test,

Solovay-Strassen test, and Fermat test are

probabilistic tests since they cannot certainly

identify the given number is prime,

sometimes they fail. This is due to the

Fermat’s little theorem and Euler’s

theorem which does not work in both ways

[Jones].

Theorem 2 Fermat Little Theorem

(Mcintosh, 2007)

If n is a prime number and a is an integer, then

a
p
 ≡ a (mod n) (1)

Furthermore, if the greatest common divisors

of a and n is 1, then

a
(n-1)

≡ 1 (mod n) (2)

Proof:

Consider the first n positive multiples of a,

that is, the integer

. None of this number

is congruent modulo n to neither any other nor

zero. If it happened,

ra ≡ sa (mod n), 1 ≤ r < s ≤ n – 1 (1)

then a could be cancelled to gives r ≡ s (mod

n), which is impossible. Therefore, the

previous set of integer must be congruent

modulo n to 1, 2, 3, …, n – 1, taken in some

order. Multiplying all these congruent

together, we find that

a.2a.3a… (n – 1) a ≡ 1.2.3….(n – 1)(mod n)

(2)

then

a
(n – 1)

 (n – 1)! ≡ (n – 1)! (mod n) (3)

by cancelling from both sides of the

preceding congruence, this is possible since n ∤

(n – 1)!, gives a
(n – 1)

 ≡ 1(mod n) (Dorsey,

1999). Therefore these theorems do not work

in both ways but the tests assumed that it

works. That is why pseudoprime exists. The

source code of each test using Mathematica

6.0 is shown in section 2, 3, and 4

respectively.

In section 5, the comparisons of the

three tests are discussed, pseudoprime

including carmichael number as absolute

pseudoprime, Euler pseudoprime in Solovay-

Strassen test, and strong pseudoprime that

produced by Miller-Rabin test are also

discussed, where we can see how Mathematica

software has helped carrying out the tests

without spending much effort on the

programming task. Lastly section 6 concludes.

2. CODING FERMAT TEST USING

MATHEMATICA 6.0

The following source codes are derived

from an algorithm obtained mainly from

Ega Gradini, Comparison Study of...

ISSN 2086 – 1397 Volume III.Nomor 1. Januari – Juni 2012 | 4

Fermat’s theorem, Euler’s Theorem and other

related theorems from number theory to test

whether or not the given number is a prime

number. First, the first 100 integers set as the

input. The output will come up as a prime or a

composite. After this is done we can enlarge

the input range to the first 1000 and until

10,000. Some build-in functions of Mathematica

6.0 is also used to carry out some technical tasks,

like finding the exact number of primes less

than an integer, tabulating prime numbers,

pseudoprimes, strong pseudoprime and

Carmichael numbers obtained from the output

of the following source codes, drawing and

plotting facilities are also been used to

facilitate our tasks. The build-in Mathematica

commands, “Prime Q[integer]” and

“PrimePi[integer] are used to compare the list of

primes and pseudoprimes and to compute

percentage of pseudoprimes produced by each

test. Due to space limitation, we are unable to

show all tables and figures. To get a full

picture of this project, we suggest one refers to

Gradini (2009).

Fermat test is developed from Fermat

Little Theorem and then become one of the

probabilistic prime testing. According to

Fermat’s Little Theorem, if n is prime and

GCD (a, n) = 1 then a
n – 1

 ≡ 1 (mod n). If n is

not prime, it is not necessary true that a
n – 1

 ≡

1 (mod n), but there still a possibility.

According to Herman and Soltys (2008), all

primes pass the Fermat test for all a ∈

ℤ Fermat’s theorem also can be used to test

compositeness of a number. For a given

integer n, choose some integer a with GCD (a,

n) = 1 and compute r ≡ a
n – 1

 (mod n). If

the modulo n computation give the results not

equal to 1, n is composite. Otherwise,

n probably prime, in other words, n can be

prime or composite.

2.1 Algorithm of Fermat Test

Input: an integer n ≥ 3.

Output: n is prime or n is composite

1. Choose random integer a with 2 ≤ a ≤

n – 1 and GCD (a, n) = 1.

1.1 Compute r ≡ a
n – 1

 (mod n).

1.2 If r ≠ 1, n is composite,

otherwise n is prime number.

2. If GCD (a, n) ≠ 1, then n is composite.

Here, when GCD (a, n) ≠ 1, n is

certainly composite because it is implies that n

has another divisors beside 1 and itself, which

is contradict with definition of prime number.

If GCD (a, n) = 1, n can be composite or prime

number.

2.2 Source Code of Fermat Test

By coding the Algorithm into Mathematica

(6.0 version), here is the source code:

a=__;

n=__;

If [2≤a≤n-1,If [GCD [a,n]==1,

r =PowerMod [a,n-1,n];

If[r≠1,n "is composite",n "is Prime"],n "is

composite "],"cannot be proceed, pick a any

integer 2≤a≤n-1"]

Once this is executed, if the input is a prime

number then it will tells you that n is a

Ega Gradini, Comparison Study of...

ISSN 2086 – 1397 Volume III. Nomor 1. Januari – Juni 2012 | 5

prime. Otherwise it will gives you a message

n is a composite. Take notes, there are

numbers which also identified as prime

numbers even though they are not. These

numbers are called pseudoprimes. This is

due again to the Fermat’s theorem. This source

code can also identify Carmichael numbers

(absolute pseudoprimes). Carmichael number

is a pseudoprime for all bases a. From the

output produced by this test, we have tabled

list of primes for every base a which are less

than 10,000. The build-in Mathematica

command, “PrimeQ[integer]” is used to

verify the primality of the test output and

from here we can identify pseudoprimes, then

the command, “PrimePi[10,000]”, is used to

compute percentage of pseudoprimes. The

smaller the percentage is, the better the ability

of the test is, as this indicates the accuracy of

the test. To look for Carmichael numbers, we

just need to look out for common

pseudoprimes for each base a. Here, we

restrict the choice of the base a from 2 until

20 only. For a complete output list of

pseudoprimes and carmichael numbers refer

to [Gradini].

3. CODING SOLOVAY-STRASSEN

TEST USING MATHEMATICA 6.0

The Solovay-Strassen primality testing was the

first test popularized by the advent of public

key cryptography, in particular RSA

cryptosystem. Solovay-Strassen test developed

from Euler test combine with Jacobi symbol.

Recall that Jacobi symbols is equivalent to

the Legendre symbols when is prime.

Definition 1 Euler’s Criterion [Jones and

Jones]

If is an odd prime and GCD (a ,n) = 1, then

for all integer a,

≡ (mod n) (1)

Definition 2 Euler Witness

Let n be an odd composite integer and a be

integer in interval [1, n-1]. If either Greatest

Common Divisor (GDD)

(a, n) > 1 or (mod n) (1)

then is called an Euler witness for .

Otherwise, if GCD (a, n) = 1 and

(mod n) (2)

 then n is said to be an Euler pseudo-prime to

the base a [Bektas].

3.1 Algorithm of Solovay-Strassen Test

Input: an odd integer n ≥ 3.

Output: n is prime or n is composite.

1. Choose a random integer a with 2≤ a

≤ n -1 and GCD (a, n) = 1.

1.1 Compute r ≡ (mod

n).

1.2 If r ≠ 1and r ≠ n-1, then

Ega Gradini, Comparison Study of...

ISSN 2086 – 1397 Volume III.Nomor 1. Januari – Juni 2012 | 6

i. Compute Jacobi

symbol, .

ii. If r ≢ S (mod n), n is

composite.

iii. Otherwise, n is prime

.

1.3 Otherwise, n is prime.

2. If GCD (a, n) ≠ 1, n is composite.

On the algorithm, n must be an odd integer,

since for n is even the remainder computation

cannot be done. This happens since it needs to

calculate r ≡ (mod n) but when n

even number, n-1 will become odd number,

thus is not integer. For some n and a, the

computation does not have integer solution.

Example for this problem will be shown next.

Same as Fermat test, when GCD (a, n) ≠ 1, n

is composite number.

3.2 Source code of Solovay-Strassen test

By coding the algorithm above onto

Mathematica (Version 6.0), the source code is

a=__;

n=__;

If[2≤a≤n-1 ∧ OddQ[n]==True,If

[GCD[a,n]==1,

 r=PowerMod[a,(n-1)/2,n];

 If [r≠ 1∧ r≠n-1,

 s=JacobiSymbol [a,n];

If [r≢Mod[s,n],n "is Composite",n "is

Prime"],

n "is Prime"],n "is composite"],"cannot be

proceed,

pick 2 ≤a≤n-1"]

Solovay-Strassen test is usually hard to

implement since it involves Jacobi symbol

computation but still Mathematica managed to

compute this. Here the same things happen as

the one in Fermat test. But here instead of

using the Fermat theorem, we have used the

Euler theorem to determine primality and it

also works one way. In this test the

pseudoprimes is called Euler pseudoprimes and

based on the output list, carmichael number

does not exist here as there is no common

pseudoprime for each base a. For a complete

output list of Euler pseudoprimes, refer to

[Gradini].

4. CODING MILLER - RABIN TEST

USING MATHEMATICA 6.0

Miller-Rabin test also known as strong

pseudo-prime test, since sometimes some

composite numbers passes this test. It comes

as a works of G.L. Miller, based on the

Riemann Hypothesis. Later, M.O. Rabin

modified it in 1976.

Theorem 3 Miller-Rabin Test [Burton].

Suppose n is an odd prime. Let

n – 1= 2
s
 r (1)

where r is odd and s ≥ 1. Let a any integer

with 1< a< n – 1, such that GCD (a, n) = 1..

Then satisfy either

a
r
≡ 1(mod n) or ≡ -1 (mod n) (2)

for some j on interval [0,s – 1].

Ega Gradini, Comparison Study of...

ISSN 2086 – 1397 Volume III. Nomor 1. Januari – Juni 2012 | 7

Theorem 4 Miller-Rabin –Selfridge Test

[Yan].

Let be a prime, then

x
2
≡ 1 (mod p) (1)

if and only if

x ≡ ± 1 (mod p) (2)

4.1 Algorithm of Miller-Rabin Test

Input: Integer .

Output: n is prime or n is composite.

1. If n is even, there are much easier test

available, otherwise continue to the

next step.

2. Choose a random integer a with 2≤ a

≤ n -1 and GCD (a, n) = 1.

3. Write n – 1= 2
s
 r where r is odd.

4. Compute b ≡ a
r
(mod n).

4.1 If b ≠ 1 and b ≠ n – 1 then do

the following

i. 1

ii. while j ≤ s-1 and b ≠ n

– 1, do the following steps

a. Compute

b←b
2
 (mod n).

b. If b = 1 then n

is composite.

iii. j←j+1

iv. If b ≠ n – 1, then n is

composite, else n is prime.

4.2 Else, n is prime.

4.2 Source Code of Miller-Rabin Test

By coding this algorithm into Mathematica

(6.0 version), the source code is:

n = __;

a = __;

k = FactorInteger [n - 1]

s = k[[1, 2]];

r = (n - 1)/(2^s);

OddQ[r]==True;

If [EvenQ[n] == True GCD[a, n] 1, n "is

even, Another suitable test available", b =

PowerMod[a, r, n];

If[b 1 ∧ b n - 1, j = 1;

While[j s - 1∧ b n - 1, b =

Mod[b^2, n];

If[b == 1, n "is comp"]; j++];

If[b n - 1, n "is composite",

n "is Prime"], n "prime"]]

Writing Miller-Rabin source code is not as

easy as the last two tests. In this test

pseudoprimes are called strong pseudoprimes

as the only pseudoprimes exist are those of

odd pseudoprimes that passes the last two

tests. Here the list of pseudoprimes is much

shorter, when compared to the earlier ones,

that means less fake primes and this makes

Miller-Rabin test a much better test then the

last two. In this test, no carmichael number is

produced. For a complete list of strong

pseudoprimes refer to[Gradini].

5. COMPARISON BETWEEN

FERMAT’S TEST, SOLOVAY-

STRASSEN TEST, AND MILLER

RABIN TEST.

Ega Gradini, Comparison Study of...

ISSN 2086 – 1397 Volume III.Nomor 1. Januari – Juni 2012 | 8

Running through all the source codes

indicated in the earlier section, we managed to

make lists of prime numbers, differentiate

pseudoprimes and strong pseudoprimes, as

well as carmichael numbers. For

pseudoprimes and carmichael numbers, we

have used some build-in Mathematica

functions to help us out in determining the

exact number of primes, such that we can

make comparison with the outputs from the

source code. Most tables and figures

pertaining to distributions of pseudoprimes,

strong pseudoprimes and carmichael numbers

are omitted due to space limitation.

Comparisons between Fermat test, Solovay-

Strassen test, and Miller-Rabin test using

Mathematica 6.0 are as follows:

1. There are absolute pseudoprimes

(carmichael numbers) in Fermat test,

but not on the other tests.

2. Miller-Rabin test is better in testing

primality than the other primality tests.

It is because the rest often wrong in

identifying integer n. By the output

obtained, Fermat test and Solovay-

Strassen test have more pseudoprimes

than Miller-Rabin test. From the test

output list, we have deduced that for

testing prime numbers, Fermat test has

the biggest number of error, while

Miller-Rabin test has the smallest

value of error.

3. Strong Pseudoprimes are fewer than

pseudoprime produced by the Fermat

and Solovay-Strassen test.

Mathematica has produced the number

of pseudoprimes that exist in integers ≤

10,000 with base a, 2 ≤ a ≤ 20. It is

learnt from the output that strong

pseudoprime is fewer than Euler and

Fermat pseudoprime. In turn, Euler

pseudoprime is fewer than Fermat

pseudoprime. Refer to table 1 for the

list of percentage of pseudoprimes.

The smaller the percentage the better

the test is.

Table 5.1: Percentage of Fermat,

Euler and strong pseudoprime.

a
Pseudoprime (%)

Fermat Euler(Solovay‐stras

sen)

Strong

(Miller‐

Rabin)

2 1.79% 1.14% 0.41%

3 1.87% 0.98% -

4 3.82% 1.79% 0.81%

5 1.55% 0.73% -

6 2.20% 1.38% 0.65%

7 1.22% 0.98% -

8 5.70% 3.18% 1.06%

9 3.99% 1.79% -

10 2.44% 1.30% 0.49%

Ega Gradini, Comparison Study of...

ISSN 2086 – 1397 Volume III. Nomor 1. Januari – Juni 2012 | 9

11 2.28% 1.14% -

12 2.69% 1.38% 0.73%

13 2.03% 1.14% -

14 2.60% 1.79% 0.65%

15 1.55% 0.73% -

16 5.13% 3.83% 2.93%

17 2.03% 1.14% -

18 3.25% 1.95% 1.06%

19 3.09% 2.04% -

20 2.60% 1.63% 0.65%

4. From the Mathematica programming,

we managed to compute the error of

Miller-Rabin test which is less than 1 /

4, where Fermat and Solovay-Strassen

is bigger than 1 / 4. Now it can be

determined that the Miller-Rabin

test has the least probability of

error in identifying primes ≤ 10,000.

Fermat and Solovay-Strassen test has

the probability of error slightly greater

than Millerrabin test.

5. From the figure 5.1, we have put all

the three output of probabilistic tests

in a chart and compare the number of

prime produced by each test in the

range of the first 500 integers,

followed by the first 1000 integers

until the first 10,000 integers. We have

also incorporated the number of prime

produced using the build-in

Mathematica function, PrimePi[

integer], for each specified range,

where this is considered as the exact

number of primes. It appears that, the

Miller-Rabin test has the nearest

number of prime to the exact one

produced by the build-in

Mathematica command. Thus this

indicates that Miller-Rabin test has

the least pseudoprimes compared to

the two tests, and the Solovay-Strassen

test has less pseudoprimes than the

pseudoprimes produced by the Fermat

test. Therefore, this makes the Miller-

Rabin test superior to Fermat and

Solovay tests. It also appears that

Solovay- Strassen test is better than

Fermat test.

Figure 5.1 the number of prime <10,001

by Fermat, Solovay-Strassen, and Miller-

Rabin test comparing to exact number

prime using Mathematica 6.0.

6. CONCLUSIONS

Using Mathematica 6.0 for the

primality tests, we have managed to conduct

technical tasks and compare the ability of the

four primality tests discussed earlier. These

technical tasks were usually done using

programming languages which take very long

time to do the source code. For example

programming language C or C++ and other

Ega Gradini, Comparison Study of...

ISSN 2086 – 1397 Volume III.Nomor 1. Januari – Juni 2012 | 10

programming languages that requires deep

understanding and time consuming.

Technically speaking, using

Mathematica, we have managed to see that

the Miller-Rabin primality test is better than

Fermat and Solovay-Strassen probabilistic

primality test as it produces less pseudoprimes

when compare to the two of them. Now, we

can actually forecast that the same trend could

also be seen when a much higher level of

programming language is being used to carry

out these four primality tests. This is to say

that, we do not need to spend so much time

and effort learning programming languages

that takes ages to produce the same results.

This project has actually taken an

advantage of the technology offered by the

Mathematica software. Without this software,

we might not be able to produce such results,

which is very fast in terms of producing lists

of meaningful output, tabulates and

interprets output data .The Mathematica

source codes together with some build-in

functions used in this project are suitable to be

used in teaching and learning processes,

especially in teaching number theory at the

university level or another area that need

contribution of them.

BIBLIOGRAPHY

Agrawal, Maninda & Kayal, Neeraj & Saxena,

Nitin. (2003). Prime is in P.

http://www.csc.iitk.ac.in/news/primalit

y-v3.ps

Anderson, James A & Bell, James M.(1996).

Number Theory with application. New

Jersey: Prentice Hall

Bektas, Attila. (2005). Probabilistic Primality

Test. Master’s thesis. The middle East

Technical University.

Borneman, Kristen.(2007). Mersenne Primes

and Lucas-Lehmer Test. [on-line],

http://www.mattfind.com/Lucas-

Lehmer test for mersenne primes.

Burton, David M.(2002). Elementary Number

Theory. 5
th

edn. New York: McGraw

Hill.

Ega, Gradini, Project report of MSc in

Teaching of Mathematics, Universiti

Sains Malaysia, 2009.

Jones, Gareth A & Jones, Mary J. (1998).

Elementary Number Theory. London:

SpringerVerlag.

Kumandari, Ramanujachary &

Romero,Christina.(1998). Number

Theory with Computer Application.

New Jersey: Prentice- Hall.

Mollin, Richard A.(1998). Fundamental

Number Theory with application.

Florida: CRC Press.

Yan,Song, Y.(2000).Number Theory for

computing. New York: Springer-

Verlag. [11] Weis stein, Eric W. (2009).

Rabin-Miller Strong Pseudoprime Test.

[online],

http://mathworld.wolfram.com/Rabin

MillerStrong PseudoprimeTest.htm1

http://www.csc.iitk.ac.in/news/primality-v3.ps
http://www.csc.iitk.ac.in/news/primality-v3.ps
http://www.mattfind.com/Lucas-Lehmer
http://www.mattfind.com/Lucas-Lehmer
http://mathworld.wolfram.com/RabinMillerStrong%20PseudoprimeTest.htm1
http://mathworld.wolfram.com/RabinMillerStrong%20PseudoprimeTest.htm1

