IMPLEMENTASI PEMBELAJARAN MATEMATIKA REALISTIK UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR KOMPUTASIONAL SISWA

  • M. Gunawan Supiarmo UIN Maulana Malik Ibrahim Malang
  • Nur Wiji Sholikin UIN Maulana Malik Ibrahim Malang
  • Sri Harmonika STAI Darul Kamal NW Kembang Kerang
  • Affan Gaffar Universitas Brawijaya
Keywords: Thinking Skill, Realistic Mathematics Learning, Computational Thinking

Abstract

Computational thinking is a type of problem-solving ability using logical thinking that students do with regular steps. This cognitive ability is one of the important skills in supporting students with mathematical concepts. However, the advantages of computational thinking do not seem to be paid much attention to by education, especially in Indonesia. This is because the learning approach does not emphasize the positive aspects that can improve students' computational thinking. As a result, the average computational thinking ability of students is low. This type of research uses an experimental method of pretest-posttest control group design. The population involved was class XII students at MA Daruttauhid Malang, which consisted of 22 students in the experimental class, and 24 students in the control class. The research data is in the form of pre-test scores before being given realistic mathematics learning treatment, and post-test score data. The results obtained showed that the computational thinking ability of students in the experimental class was higher than in the control class. To be clear, this fact is measured by calculating the N-Gain scores of students in the experimental class with a value of 0.7 (high category), and the N-Gain scores of control class students with a value of 0.5 (medium category).

Abstrak

Berpikir komputasional adalah jenis kemampuan pemecahan masalah menggunakan logika berpikir yang dilakukan siswa dengan langkah yang teratur. Kemampuan kognitif tersebut menjadi salah satu keterampilan penting dalam mendukung siswa terhadap konsep matematika. Namun keunggulan dari pemikiran komputasional, nampaknya tidak terlalu diperhatikan oleh Pendidikan, khususnya di Indonesia. Hal ini karena pendekatan pembelajaran kurang menekankan pada aspek positif yang dapat memberikan peningkatan siswa dalam berpikir secara komputasional. Akibatnya secara rata-rata kemampuan berpikir komputasional siswa menjadi rendah. Jenis penelitian ini menggunakan metode eksperimen jenis pretest-posttest control group design. Populasi yang terlibat ialah siswa kelas XII MA Daruttauhid Malang yang terdiri atas sebanyak 22 siswa pada kelas eksperimen, dan 24 siswa kelas kontrol. Data penelitian berupa skor pretest sebelum diberikan perlakuan pembelajaran matematika realistik, dan data skor posttest. Hasil penelitian yang diperoleh, menunjukkan bahwa kemampuan berpikir komputasional siswa pada kelas eksperimen lebih tinggi dibandingkan kelas kontrol. Untuk lebih jelasnya, fakta ini diukur dengan menghitung skor N-Gain siswa pada kelas eksperimen dengan nilai 0,7 (kategori tinggi), dan skor N-Gain siswa kelas kontrol bernilai 0,5 (kategori sedang).

References

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 computational thinking curriculum framework: Implications for teacher knowledge. Educational Technology and Society, 19(3), 47–57.

Ayub, M., Wijanto, M. C., Senjaya, W. F., Karnalim, O., & Kandaga, T. (2017). Edukasi Berpikir Komputasional melalui Pelatihan Guru dan Tantangan Bebras untuk Siswa di Bandung pada tahun 2016. Seminar Nasional Pengabdian Kepada Masyarakat, 2(2), 12–18.

Brackmann, C. P., Moreno-León, J., Román-González, M., Casali, A., Robles, G., & Barone, D. (2017). Development of computational thinking skills through unplugged activities in primary school. ACM International Conference Proceeding Series, 65–72. https://doi.org/10.1145/3137065.3137069

Bray, A., Oldham, E., Tangney, B., Bray, A., Oldham, E., & Tangney, B. (2016). Technology-mediated realistic mathematics education and the bridge21 model : A teaching experiment To cite this version : HAL Id : hal-01289351 Technology-mediated realistic mathematics education and the bridge21 model : A teaching experiment. February.

Cahdriyana, R. A. (2020). Berpikir Komputasi Dalam Pembelajaran Matematika. XI(1), 33–35.

Città, G., Gentile, M., Allegra, M., Arrigo, M., Conti, D., Ottaviano, S., Reale, F., & Sciortino, M. (2019). The effects of mental rotation on computational thinking. Computers and Education, 141(June), 0–10. https://doi.org/10.1016/j.compedu.2019.103613

Course, M. (2017). The Effects of Realistic Mathematics Education on Students ’ Math Self Reports in Fifth Grades. 9(1), 81–103.

Drijvers, P. (2019). Embodied Instrumentation: Combining Different Views on Using Digital Technology in Mathematics Education. Eleventh Congress of the European Society for Research in Mathematics Education. https://hal.archives-ouvertes.fr/hal-02436279

Gadanidis, G., Cendros, R., Floyd, L., & Namukasa, I. (2017). Computational thinking in mathematics teacher education. Contemporary Issues in Technology & Teacher Education, 17(4), 458–477.

Gog, T. Van, Hoogerheide, V., & Harsel, M. Van. (2020). The Role of Mental Effort in Fostering Self-Regulated Learning with Problem-Solving Tasks.

Gravemeijer, K., & Doorman, M. (1999). Context problems in realistic mathematics education: A calculus course as an example. Educational Studies in Mathematics, 39(1–3), 127–129.

Gravemeijer, K. P. E. (1994). Developing realistic mathematics education. Faculty of Sciences, Freudenthal Institute, 13(3), 200 pp. http://www.cdbeta.uu.nl/tdb/fulltext/199503-terwel2.pdf%0Ahttp://www.fisme.science.uu.nl/toepassingen/20014/

Halpern, D. F. (2014). Thought and Knowledge: An Introduction to Critical Thinking. (5th ed.). Psychology Press.

Harsa Wara Prabawa, & H. R. S. M. (2019). Peningkatan Kemampuan Berpikir Komputasi Siswa Melalui Multimedia Interaktif Berbasis Model Quantum Teaching and Learning. International Journal of Computer Science Education in Schools, 8(1), 41. https://doi.org/10.13140/RG.2.2.34438.83526

Karen Brennan, M. R. (2012). New Frameworks for Studying and Assessing the Development of Computational Thinking. Studies in Computational Intelligence, 727, 135–160. https://doi.org/10.1007/978-3-319-64051-8_9

Kaya, E., Yesilyurt, E., Newley, A., & Deniz, H. (2019). Examining the Impact of a Computational Thinking Intervention on Pre-Service Elementary Science Teachers’ Computational Thinking Teaching Efficacy Beliefs, Interest and Confidence. Journal of Computers in Mathematics and Science Teaching, 38(4), 385–392.

Laurens, T., Batlolona, F. A., Batlolona, J. R., & Leasa, M. (2018). How does realistic mathematics education (RME) improve students’ mathematics cognitive achievement? Eurasia Journal of Mathematics, Science and Technology Education, 14(2), 569–578. https://doi.org/10.12973/ejmste/76959

Le, T. A. (2006). Applying Realistic Mathematics Education in Vietnam : Teaching middle school geometry. Univesitat Postdam.

Lee, T. Y., Mauriello, M. L., Ahn, J., & Bederson, B. B. (2014). CTArcade: Computational Thinking with Games in School Age Children. International Journal of Child-Computer Interaction, 2(1), 26–33. https://doi.org/10.1016/j.ijcci.2014.06.003

M. Gunawan Supiarmo, Heri Sopian Hadi, T. (2022). Student’s Computational Thinking Process in Solving PISA Questions in Terms of Problem Solving Abilities. (JIML) Journal of Innovative Mathematics Learning, 5(1), 1–11.

M. Gunawan Supiarmo, Turmudi, E. S. (2021). Proses Berpikir Komputasional Siswa dalam Menyelesaikan Soal Pisa Konten Change and Relationship Berdasarkan Self-Regulated Learning. Jurnal N, 8(1), 58–72.

Makonye, J. P. (2014). Teaching Functions Using a Realistic Mathematics Education Approach : A Theoretical Perspective. 7(3), 653–662.

Mathew, R., Malik, S. I., & Tawafak, R. M. (2019). Teaching Problem Solving Skills using an Educational Game in a Computer Programming Course. 18(2), 359–373. https://doi.org/10.15388/infedu.2019.17

Muhammad Syarifuddin, Diva Fardiana Risa, A. I. H. & N. (2016). Experiment computational Thinking: Upaya Meningkatkan Kualitas Problem Solving Anak Melalui Permainan Gorlids. 3(6), 1–15.

Román-González, M., Moreno-León, J., & Robles, G. (2017). Complementary Tools for Computational Thinking Assessment. Proceedings of International Conference on Computational Thinking Education (CTE 2017), 154–159. http://www.eduhk.hk/cte2017/doc/CTE2017 Proceedings.pdf

Supiarmo, M. G. (2021). Transformasi Proses Berpikir Komputasional Siswa Sekolah Menengah Atas pada Pemecahan Masalah Matematika Melalui Refleksi. UIN Maulana Malik Ibrahim Malang.

Supiarmo, M. G., Azizah, S., Putrawangsa, S., & Sujarwo, I. (2020). Implementasi Pembelajaran Matematika Berbasis PMR pada Materi Operasi Perkalian Bilangan Bulat. Prosiding Seminar Nasional Integrasi Matematika Dan Nilai Islami, 3(1), 277–284.

Tedre, M., & Denning, P. J. (2016). The long quest for computational thinking. ACM International Conference Proceeding Series, 120–129. https://doi.org/10.1145/2999541.2999542

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining Computational Thinking for Mathematics and Science Classrooms. Journal of Science Education and Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5

Wing, J. (2014). Computational thinking benefits society. Journal of Computing Sciences in Colleges, 24(6), 6–7. https://doi.org/10.1145/1227504.1227378

Yadav, A., Stephenson, C., & Hong, H. (2017). Computational Thinking for Teacher Education. Communications of the ACM, 60(4), 55–62. https://doi.org/10.1145/2994591

Yeti̇m Karaca, S., & Özkaya, A. (2017). The Effects of Realistic Mathematics Education on Students’ Math Self Reports in Fifth Grades Mathematics Course conditions of the Creative Commons Attribution license (CC BY-NC-ND). International Journal of Curriculum and Instruction, 9(1), 81–103.

Article Metrics
Abstract views: 114
pdf downloads: 84
Published
2022-04-30
How to Cite
M. Gunawan Supiarmo, Sholikin, N. W., Harmonika, S., & Gaffar, A. (2022). IMPLEMENTASI PEMBELAJARAN MATEMATIKA REALISTIK UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR KOMPUTASIONAL SISWA. Numeracy, 9(1), 1-13. https://doi.org/10.46244/numeracy.v9i1.1750
Section
Articles