KESALAHAN PENALARAN MATEMATIS PADA MATERI PERSAMAAN DIFERENSIAL
Abstract
Mathematical reasoning is a thinking activity that connects various facts, characteristics, pattern of relationships in problem solving so that logical generalizations are obtained. Not a few errors occur in the process of solving differential equation. An investigation is needed on the reasoning process in solving differential equation problems. The purpose of this research is to describe students’ mathematical reasoning errors in the differential equation material. This research is a qualitative descriptive with test instruments and interview guidelines. The research was conducted on 5 subjects, namely 6th semester students. The results showed that the most mathematical reasoning errors were indicators using relationship patterns to analyze the situation. In the reasoning process, many reasoning errors are made in planning solutions, mathematical manipulation, and making conclusions.
References
Adamura, F., & Susanti, V. D. (2018). Penalaran Matematis Mahasiswa dengan Kemampuan Berpikir Intuitif Sedang dalam Memecahkan Masalah Analisis Real. Jurnal Edukasi Matematika Dan Sains, 6(2), 77. https://doi.org/10.25273/jems.v6i2.5366
Alfin, M. B., Hidayati, Y., Hadi, W. P., & Irsad, R. (2019). Analisis Kemampuan Berpikir Kritis Siswa Terhadap Pembelajaran Hypothetico-Deductive Reasoning Dalam Learning Cycle 7E. Jppipa, 4(2), 75–81. http://journal.unesa.ac.id/index.php/jppipa
Basir, F., Ekawati, S., Studi, P., Matematika, P., Palopo, U. C., Diferensial, P., & Pendahuluan, A. (n.d.). Berdasarkan Gender Pada Mata Kuliah. 5, 78–84.
Budhi, W. S. (2006). Langkah Awal Menuju Ke Olimpiade Matematika. CV Ricardo.
Desmita. (2012). Psikologi Perkembangan Peserta Didik. PT. Remaja Rosdakarya.
Eggen, P., & Kauchack, D. (2012). Srategi dan Model Pembelajaran (6th ed.). PT Indeks.
Farida Kurniawati, Sapti, M., & Yuzianah, D. (2021). Deskripsi Level Kemampuan Berpikir Matematis Berdasarkan Shafer dan Foster dalam Penyelesaian Masalah Materi Pecahan. Jurnal Inovasi Pendidikan Matematika (JIPM), 3(2), 73–82. https://doi.org/10.37729/jipm.v3i2.1646
Isoda, M., & Katagiri, S. (2012). Introductory Chapter: Problem Solving Approach to Develop Mathematical Thinking. Mathematical Thinking, 1(2012), 1–28. https://doi.org/10.1142/9789814350853_0001
Jennifer A. Czocher, Jenna Tague, and G. B. (2014). Coherence from Calculus to Differential Equations. Paper Knowledge . Toward a Media History of Documents. http://pzacad.pitzer.edu/~dbachman/RUME_XVI_Linked_Schedule/rume16_submission_94.pdf
Konita, M., Asikin, M., & Noor Asih, T. S. (2019). Kemampuan Penalaran Matematis dalam Model Pembelajaran Connecting, Organizing, Reflecting, Extending (CORE). PRISMA,Prosiding Seminar Nasional Matematika, 2, 611–615.
Kurnia, E., Suryanti, & Nisa, S. K. (2019). Profil Penalaran Siswa MTs Al Muslihuun Pada Materi Peluang Berorientasi Pendekatan Metaphorical Thinking Ditinjau dari Kemampuan Matematis. Cakrawala Pendidikan, 23(April), 154–162.
Li, N., Mok, I. A. C., & Cao, Y. (2019). The evolution of mathematical thinking in Chinese mathematics education. Mathematics, 7(3), 1–18. https://doi.org/10.3390/math7030297
Napitupulu, E. E. (2017). Analyzing the Teaching and Learning of Mathematical Reasoning Skills in Secondary School. Asian Social Science, 13(12), 167. https://doi.org/10.5539/ass.v13n12p167
Ningsih, Y. L., & Rohana, R. (2018). Pemahaman Mahasiswa Terhadap Persamaan Diferensial Biasa Berdasarkan Teori Apos. Jurnal Penelitian Dan Pembelajaran Matematika, 11(1). https://doi.org/10.30870/jppm.v11i1.2995
Pandu, Y. K., & Suwarsono, S. (2021). Analisis Kemampuan Penalaran Matematika Mahasiswa dalam Menyelesaikan Masalah Matematika Materi Limit Fungsi. PRISMA, Prosiding Seminar Nasional Matematika, 4, 436–445. https://journal.unnes.ac.id/sju/index.php/prisma/article/view/44991
Permana, Y., & Sumarmo, U. (2007). Melalui Pembelajaran Berbasis Masalah. Educationist, I(2), 116–123.
Polya, G. (1978). How to solve it: a new aspect of mathematical method second edition. In The Mathematical Gazette (Vol. 30, p. 181). http://www.jstor.org/stable/3609122?origin=crossref
Ramdhani, S. (2018). Kemampuan Generalisasi Mahasiswa Pada Perkuliahan Kapita Selekta Matematika Sma. Jurnal Analisa, 4(2), 83–89. https://doi.org/10.15575/ja.v4i2.3926
Ramdhani, V. (2021). Penggunaan Software Maple pada Pembelajaran Persamaan Diferensial Biasa. GAUSS: Jurnal Pendidikan Matematika, 4(1), 70–80. https://doi.org/10.30656/gauss.v4i1.2985
Septian, A. (2014). Pengaruh Kemampuan Prasyarat terhadap Kemampuan Penalaran Matematis Mahasiswa dalam Matakuliah Analisis Real. ATIKAN: Jurnal Kajian Pendidikan, 4(2), 179–188. http://journals.mindamas.com/index.php/atikan/article/view/16/15
Shadiq, F. (2013). Penalaran dengan Analogi? Pengertiannya dan Mengapa Penting? Artikel Pendidikan PPPPTK Matematika, 1–7. http://p4tkmatematika.kemdikbud.go.id/artikel/2013/12/02/penalaran-dengan-analogi-pengertiannya-dan-mengapa-penting/
Siti Nurjanah, Gida Kadarisma, W. S. (2019). Analisis Kemampuan Penalaran Matematika dalam Materi Sistem Persamaan Linear Dua Variabel Pada Siswa Smp Kelas VIII Ditinjau dari Perbedaan Gender. Journal On Education, 01(02), 372–381. https://doi.org/https://doi.org/10.31004/joe.v1i2.77
Somatanaya, A. A. G. (2017). Analisis Kemampuan Berfikir Nalar Matematis serta Kontribusinya Terhadap Prestasi Belajar Mahasiswa (Studi Terhadap Mahasiswa FKIP Pendidikan Matematika Universitas Siliwangi). TEOREMA : Teori Dan Riset Matematika, 1(2), 55. https://doi.org/10.25157/teorema.v1i2.547
Sulistyorini, Y. (2017). Analisis Kesalahan Dan Scaffolding Dalam Penyelesaian Persamaan Diferensial. KALAMATIKA Jurnal Pendidikan Matematika, 2(1), 91. https://doi.org/10.22236/kalamatika.vol2no1.2017pp91-104
Suryanti, Sari, C. Y., & Kristiani. (2020). Kesalahan Penyelesaian Soal Statistika Tipe High Order Thinking Skills Berdasarkan Teori Newman. Jurnal Tadris Matematika, 3(2), 207–218. https://doi.org/10.21274/jtm.2020.3.2.207-218
Sutarto, & Hastuti, I. D. (2010). Conjecturing Dalam Pemecahan Masalah. 1(2), 172–178.
Tan, O. S. (2004). Enhancing Thinking through Problem –based Learning Approaches: International Perpectives. Thomson.
The National Council of Teachers of Mathematics. (2000). Principles Standards and for School Mathematics.
Widodo, S. A. (2016). Kesalahan Dalam Pemecahan Masalah Divergensi Pada Mahasiswa Matematika. AdMathEdu : Jurnal Ilmiah Pendidikan Matematika, Ilmu Matematika Dan Matematika Terapan, 4(1). https://doi.org/10.12928/admathedu.v4i1.4810
pdf downloads: 677